The perimeters of two similar triangles are 30 cm and 20 cm respectively. If one side of the first triangle is 12 cm, then the corresponding side of the second triangle is …………….. cm

(A) 8 

(B) 10 

(C) 12 

(D) 20

4 views

2 Answers

Correct option is (A) 8

The ratio of perimeter of two similar triangles is equal to the ratio of their corresponding sides.

\(\therefore\) \(\frac{\text{Perimeter of first triangle}}{\text{Perimeter of second triangle}}\) \(=\frac{\text{Side of first triangle}}{\text{Corresponding side of second triangle}}\)

\(\Rightarrow\) \(\frac{12}{\text{Corresponding side of second triangle}}=\frac{30}{20}\)

\(\Rightarrow\) Corresponding side of second triangle \(=12\times\frac{20}{30}\)

\(=\frac{24}3=8\,cm\)

4 views

Correct option is: (A) 8

4 views