The areas of two similar triangles are 16 cm2 and 25 cm2 respectively, then the ratio of their corresponding sides is ………

(A) 5 : 4 

(B) 4 : 5 

(C) 16 : 25 

(D) 25 : 16

4 views

2 Answers

Correct option is (B) 4 : 5

Let similar triangles are \(\triangle ABC\;\&\;\triangle DEF\)

Also let \(ar(\triangle ABC)=16\,cm^2\;\&\)

\(ar(\triangle DEF)=25\,cm^2\)

\(\because\) \(\frac{ar(\triangle ABC)}{ar(\triangle DEF)}=(\frac{AB}{DE})^2\)

\(\therefore\) \((\frac{AB}{DE})^2=\frac{16}{25}\)

\(\Rightarrow\) \(\frac{AB}{DE}=\sqrt{\frac{16}{25}}=\frac45\)

\(\therefore AB:DE=4:5\)

Hence, the ratio of corresponding sides of given triangle is 4:5.

4 views

Correct option is: (B) 4 : 5

4 views