If A is a non-singular matrix, then
If A is a non-singular matrix, then
A. `A^(-1)` is a non-singular matrix, then
B. `A^(-1)`is skew-symmetric if A is symmetric
C. `abs(A^-1) = abs(A)`
D. `abs(A^-1) = abs(A)^(-1)`
4 views
1 Answers
Correct Answer - A::D
`because abs(A) ne 0 rArr A^(-1) `
is also symmetric, if A is symmetric
and `abs(A^(-1)) = 1/abs(A) = abs(A) ^(-1)`
4 views
Answered