If matrix `A = [a_(ij)]_(3xx3), ` matrix `B= [b_(ij)]_(3xx3)` where `a_(ij) + a_(ij)=0 and b_(ij) - b_(ij) = 0` then `A^(4) cdot B^(3) ` is
If matrix `A = [a_(ij)]_(3xx3), ` matrix `B= [b_(ij)]_(3xx3)` where
`a_(ij) + a_(ij)=0 and b_(ij) - b_(ij) = 0` then `A^(4) cdot B^(3) ` is
A. skew- symmetric matrix
B. singular
C. symmetric
D. zero matrix
4 views
1 Answers
Correct Answer - B
Since, A is skew-symmetric.
`therefore abs(A)=0`
`rArr abs(A^(4) B^(3)) = abs(A^(4)) abs(B^3) = abs(A)^(4) abs(B)^(3) = 0`
4 views
Answered