यदि बिंदुओं A ,B ,C और D के स्थिति सदिश क्रमशः ` 2hati +4hat k,5hati + 3sqrt (3) hat j+ 4hatk, -2sqrt(3) hatj +hatk ` और ` 2hati +hatk ` है, तो सिद्ध कीजिए-
` " "CD||AB` और ` CD =(2)/(3) vec AB `

4 views

1 Answers

माना O मूलबिंदु है, तब
` " "vec (OA) =2hati +4hatk , vec (OB) =5hat i+3sqrt(3) hatj +4hatk ,`
` " " vec (OC) =-2sqrt( 3) hatj + hatk , vec (OD) =2hati +hatk `
अब ` " " vec (AB) =(5hati +3sqrt3 hati +4hatk )-( 2hati +4hatk ) `
` rArr " " vec (AB) =3hati +3sqrt( 3) hatj + 0hatk " "...(1) `
और ` " " vec (CD) =vec (OD) -vec ( OC) `
` rArr " "vec (CD) =(2hat i+hatk ) -( -2sqrt(3) hatj +hatk ) `
` rArr " "vec ( CD) =2hati +2sqrt(3) hatj +0hatk `
`rArr " " vec ( CD) =2( hati +2sqrt3hatj +0hatk)`
` rArr " " vec (CD) =(2)/(3) (3hati+3sqrt( 3) hatj + 0hatk) `
` rArr " " vec (CD) =(2)/(3) xx vec (AB) " " ` [समीकरण (1 ) से]
` rArr vec (CD), vec (AB) ` के समांतर है और ` vec (CD) =(2)/(3) xx vec (AB) `

4 views

Related Questions