Find the numbers such that the sum of thrice the first and the second is 142, and four times the first exceeds the second by 138.

7 views

2 Answers

Let the first number be x and the second number be y. 

Then, we have:

3x + y = 142 ……….(i) 

4x - y = 138 ………(ii) 

On adding (i) and (ii), we get 

7x = 280 

⇒ x = 40 

On substituting x = 40 in (i), we get:

 3 × 40 + y = 142 

⇒ y = (142 – 120) = 22 

⇒ y = 22 

Hence, the first number is 40 and the second number is 22.

7 views

Let the first number be x and the second number be y. 

Then, we have:

3x + y = 142 ……….(i) 

4x - y = 138 ………(ii) 

On adding (i) and (ii), we get 

7x = 280 

⇒ x = 40 

On substituting x = 40 in (i), we get: 

3 × 40 + y = 142 

⇒ y = (142 – 120) = 22 

⇒ y = 22 

Hence, the first number is 40 and the second number is 22.

7 views