The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is

(a) 102 

(b) 25 

(c) 26 

(d) None of these

4 views

2 Answers

(c) 26 is the correct choice since the total number of terms are 52 of which 26 terms get cancelled.

4 views

The correct option is (C) 26

Explanation:

We have to expand (x + a)51 – (x – a)51
At first,  (x + a)51 = 51C0 x51 + 51C1 x50 a + 51C2 x49 a2 + ...... + 51C51 a51
then, (x – a)51 = 51C0 x51 - 51C1 x50 a + 51C2 x49 a2 - ...... - 51C51 a51

When we subtract both the values i.e. (x + a)51 – (x – a)51 we get, 
2( 51C1 x50 a + 51C3 x48 a3 + ...... + 51C51 a51)

Thus count the number of terms that is number of odd numbers up to 51. 

i.e 1, 3, 5, 7, ......, 49, 51

Apply AP:
a + (n-1)d = 51
1 + (n-1)2 = 51
n = 26
So, the total numbers of terms in the expansion is 26.

4 views