If α, β ∈ C are the distinct roots, of the equation x2 – x + 1 = 0, then α101 + β107 is equal to

(1) –1   (2) 0   (3) 1   (4) 2

4 views

1 Answers

Note that:
x^3+1=(x+1)(x^2−x+1)
 
So since  
α is a root of  x^2−x+1=0
  we have:
α^3+1=(α+1(α^2−α+1)
=(α+1)(0)
=0
So:α^3=−1
 
Similarly:
β^3=−1
 
Also:
x^2−x+1=(x−α)(x−β)
=x^2−(α+β)x+αβ

So:
α+β=1
αβ=1
 
Note that:
α^2+β^2=(α+β)^2−2αβ
=1-2
=−1

So:

α^101+β^107
=α^(3×33+2)+β^(3×35+2)

According to indices rule

(α^3)^33×α^2+(β^3)^35×β^2

Remember:
α^3=-1
β^3=-1

So substituting we have


(-1)^33×α^2+(-1)^35×β^2

=-α^2-β^2

=-(α^2+β^2)

Remember

α^2+β^2=-1

So from there we have

-(-1)

=1

4 views