4 views

1 Answers

In mathematics, a right group is an algebraic structure consisting of a set together with a binary operation that combines two elements into a third element while obeying the right group axioms. The right group axioms are similar to the group axioms, but while groups can have only one identity and any element can have only one inverse, right groups allow for multiple one-sided identity elements and multiple one-sided inverse elements.

It can be proven that a right group is isomorphic to the direct product of a right zero semigroup and a group, while a right abelian group is the direct product of a right zero semigroup and an abelian group. Left group and left abelian group are defined in analogous way, by substituting right for left in the definitions. The rest of this article will be mostly concerned about right groups, but everything applies to left groups by doing the appropriate right/left substitutions.

4 views

Related Questions