1 Answers
Decarboxylative cross coupling reactions are chemical reactions in which a carboxylic acid is reacted with an organic halide to form a new carbon-carbon bond, concomitant with loss of CO2. Aryl and alkyl halides participate. Metal catalyst, base, and oxidant are required.
A significant advantage of this reaction is that it uses relatively inexpensive carboxylic acids and is far less air and moisture sensitive in comparison to typical cross-coupling organometallic reagents. Furthermore, the carboxylic acid moiety is a common feature of natural products and can also be prepared by relatively benign air oxidations. Additional benefits include the broad tolerance of functional groups, as well as the capacity to avoid the use of strong bases. An important elementary step in this reaction is protodecarboxylation or metalation to first convert the C–COOH bond to a C–H or C–M bond respectively.