1 Answers
In mathematics, the Dedekind zeta function of an algebraic number field K, generally denoted ζK, is a generalization of the Riemann zeta function. It can be defined as a Dirichlet series, it has an Euler product expansion, it satisfies a functional equation, it has an analytic continuation to a meromorphic function on the complex plane C with only a simple pole at s = 1, and its values encode arithmetic data of K. The extended Riemann hypothesis states that if ζK = 0 and 0 < Re < 1, then Re = 1/2.
The Dedekind zeta function is named for Richard Dedekind who introduced it in his supplement to Peter Gustav Lejeune Dirichlet's Vorlesungen über Zahlentheorie.
5 views
Answered