6 views

1 Answers

In vector calculus, the curl is a vector operator that describes the infinitesimal circulation of a vector field in three-dimensional Euclidean space. The curl at a point in the field is represented by a vector whose length and direction denote the magnitude and axis of the maximum circulation. The curl of a field is formally defined as the circulation density at each point of the field.

A vector field whose curl is zero is called irrotational. The curl is a form of differentiation for vector fields. The corresponding form of the fundamental theorem of calculus is Stokes' theorem, which relates the surface integral of the curl of a vector field to the line integral of the vector field around the boundary curve.

The alternative terminology rotation or rotational and alternative notations rot F or the cross product with the del operator ∇ × F are sometimes used for curl F.

Unlike the gradient and divergence, curl as formulated in vector calculus does not generalize simply to other dimensions; some generalizations are possible, but only in three dimensions is the geometrically defined curl of a vector field again a vector field. This deficiency is a direct consequence of the limitations of vector calculus; when expressed via the wedge operator of geometric calculus, the curl generalizes to all dimensions. The unfortunate circumstance is similar to that attending the 3-dimensional cross product, and indeed the connection is reflected in the notation ∇× for the curl.

6 views