1 Answers

In mathematics, The fundamental theorem of topos theory states that the slice E / X {\displaystyle \mathbf {E} /X} of a topos E {\displaystyle \mathbf {E} } over any one of its objects X {\displaystyle X} is itself a topos. Moreover, if there is a morphism f : A → B {\displaystyle f:A\rightarrow B} in E {\displaystyle \mathbf {E} } then there is a functor f ∗ : E / B → E / A {\displaystyle f^{*}:\mathbf {E} /B\rightarrow \mathbf {E} /A} which preserves exponentials and the subobject classifier.

5 views