4 views

1 Answers

In mathematics, an invariant polynomial is a polynomial P {\displaystyle P} that is invariant under a group Γ {\displaystyle \Gamma } acting on a vector space V {\displaystyle V}. Therefore, P {\displaystyle P} is a Γ {\displaystyle \Gamma } -invariant polynomial if

for all γ ∈ Γ {\displaystyle \gamma \in \Gamma } and x ∈ V {\displaystyle x\in V}.

Cases of particular importance are for Γ a finite group , a compact group, a Lie group or algebraic group. For a basis-independent definition of 'polynomial' nothing is lost by referring to the symmetric powers of the given linear representation of Γ.

4 views

Related Questions

What is u-invariant?
1 Answers 4 Views
What is Kostant polynomial?
1 Answers 4 Views
What is Linearised polynomial?
1 Answers 4 Views
What is Invariant mass?
1 Answers 4 Views