4 views

1 Answers

In complex dynamics, the bifurcation locus of a family of holomorphic functions informally is a locus of those maps for which the dynamical behavior changes drastically under a small perturbation of the parameter. Thus the bifurcation locus can be thought of as an analog of the Julia set in parameter space. Without doubt, the most famous example of a bifurcation locus is the boundary of the Mandelbrot set.

Parameters in the complement of the bifurcation locus are called J-stable.

4 views

Related Questions

What is Connectedness locus?
1 Answers 4 Views
What is Spatial bifurcation?
1 Answers 6 Views