4 views

1 Answers

In mathematics, Krener's theorem is a result attributed to Arthur J. Krener in geometric control theory about the topological properties of attainable sets of finite-dimensional control systems. It states that any attainable set of a bracket-generating system has nonempty interior or, equivalently, that any attainable set has nonempty interior in the topology of the corresponding orbit. Heuristically, Krener's theorem prohibits attainable sets from being hairy.

4 views

Related Questions