4 views

1 Answers

The notion of a self-reproducing computer program can be traced back to initial theories about the operation of complex automata. John von Neumann showed that in theory a program could reproduce itself. This constituted a plausibility result in computability theory. Fred Cohen experimented with computer viruses and confirmed Neumann's postulate and investigated other properties of malware such as detectability and self-obfuscation using rudimentary encryption. His 1988 Doctoral dissertation was on the subject of computer viruses.

Cohen's faculty advisor, Leonard Adleman, presented a rigorous proof that, in the general case, algorithmic determination of the presence of a virus is undecidable. This problem must not be mistaken for that of determination within a broad class of programs that a virus is not present. This problem differs in that it does not require the ability to recognize all viruses.

Adleman's proof is perhaps the deepest result in malware computability theory to date and it relies on Cantor's diagonal argument as well as the halting problem. Ironically, it was later shown by Young and Yung that Adleman's work in cryptography is ideal in constructing a virus that is highly resistant to reverse-engineering by presenting the notion of a cryptovirus. A cryptovirus is a virus that contains and uses a public key and randomly generated symmetric cipher initialization vector and session key.

In the cryptoviral extortion attack, the virus hybrid encrypts plaintext data on the victim's machine using the randomly generated IV and SK. The IV+SK are then encrypted using the virus writer's public key. In theory the victim must negotiate with the virus writer to get the IV+SK back in order to decrypt the ciphertext. Analysis of the virus reveals the public key, not the IV and SK needed for decryption, or the private key needed to recover the IV and SK. This result was the first to show that computational complexity theory can be used to devise malware that is robust against reverse-engineering.

4 views