1 Answers

Option 2 : 30

Given:

n(H) = 25

n(I) = 26

n(T) = 26

n(H ∩ I) = 9

n(H ∩ T) = 11

n(T ∩ I) = 8

n(H ∩ T ∩ I) = 3

Formula used:

n(H [ alt="gif" src="https://entrancecorner.codecogs.com/gif.latex?%5Ccup" style="border-style: none; max-width: 95%; "> T [ alt="gif" src="https://entrancecorner.codecogs.com/gif.latex?%5Ccup" style="border-style: none; max-width: 95%; "> I) = n(H) + n(I) + n(T) - n(H ∩ I) - n(H ∩ T) - n(T ∩ I) + n(H ∩ T ∩ I) 

Calculation:

The number of students who read at least one of the newspapers = 25 + 26 + 26 - 9 - 11 - 8 + 3 = 52

The number of students who read exactly one newspaper = The number of students who read at least one of the newspapers - n(H ∩ I) - n(H ∩ T) - n(T ∩ I) + 2n(H ∩ T ∩ I)

⇒ 52 - 9 - 11 - 8 + 6

⇒ 30

∴ The number of students who read exactly one newspaper is 30.

9 views

Related Questions