1 Answers
Option 2 : 30
Given:
n(H) = 25
n(I) = 26
n(T) = 26
n(H ∩ I) = 9
n(H ∩ T) = 11
n(T ∩ I) = 8
n(H ∩ T ∩ I) = 3
Formula used:
n(H [ alt="gif" src="https://entrancecorner.codecogs.com/gif.latex?%5Ccup" style="border-style: none; max-width: 95%; "> T [ alt="gif" src="https://entrancecorner.codecogs.com/gif.latex?%5Ccup" style="border-style: none; max-width: 95%; "> I) = n(H) + n(I) + n(T) - n(H ∩ I) - n(H ∩ T) - n(T ∩ I) + n(H ∩ T ∩ I)
Calculation:
The number of students who read at least one of the newspapers = 25 + 26 + 26 - 9 - 11 - 8 + 3 = 52
The number of students who read exactly one newspaper = The number of students who read at least one of the newspapers - n(H ∩ I) - n(H ∩ T) - n(T ∩ I) + 2n(H ∩ T ∩ I)
⇒ 52 - 9 - 11 - 8 + 6
⇒ 30
∴ The number of students who read exactly one newspaper is 30.