1 Answers
Answer: Option 4
(a) x% of y = $$\frac{xy}{100}$$ and y of z = $$\frac{yz}{100}$$ x > y, y ⇒ xy > yz ⇒ $$\frac{xy}{100}$$ > $$\frac{yz}{100}$$ ⇒ x% of y > y% of z (b) y% of x = $$\frac{xy}{100}$$ and z% of y = $$\frac{yz}{100}$$ As proved above, y% of x > z% of y (c) z% of x = $$\frac{xy}{100}$$ and y% of z = $$\frac{yz}{100}$$ x > y ⇒ xz > yz ⇒ $$\frac{xz}{100}$$ > $$\frac{yz}{100}$$ ⇒ z% of x > y% of z
5 views
Answered