Logical Reasoning | Mathematical Inequalities

Statements: M < Q > N ≤ Z < T, R > L < Y > M; Conclusions: I. Q > L II. N > Y
Statements: - A > S ≥ D = F; G < H ≥ J > K; Q ≤ W > F ≥ R; X = C > H < Q Conclusions a.  S > C b.  K < Q c.   D = H d.  J ≥ W
Statement:- A ≥ B > C = D > E; F > B; Z < D; M > A Conclusions a.      M > Z b.      M = Z c.      Z > C d.      B = D    
Statements:  A ≥ B > C ≥ M; C > D; D < M; A ≤ N Conclusions: i) D > B ii) A < C iii) M ≥ C iv) B > A
Statements: M ≥ N = P; R ≥ M; P = L; L > O Conclusions: i) M > O ii) R = M iii) P > O iv) P > R
Statements: P > V ≥ R = U > Q; T < V; W > P; V = R Conclusions: i) V > Q ii) P < W iii) U > V iv) Q > T
Statements followed by some conclusions are given below. Statements: O ≤ P < Q, A > B ≤ C, X = O > C Conclusions: I. A > X  II.C ≤ A  III.Q > B  IV. A ≤ O  V. A < C 
Statements followed by some conclusions are given below. Statement: Z = Y ≥ T > D < C = A ≤ H = G  ≤  J   Conclusions: I. Y < C  II. Z ≥ C  III. A ≤ J  Iv. J = Y 
Statements followed by some conclusions are given below. Statement: M = N > O, P < Q < W > Y, Y = E = N , Q < R Conclusions: I. Q < E  II. R < P  III. R > Y  IV. E ≤  Q 
Statements followed by some conclusions are given below. Statement: A < B = C, F ≤ G < T, G = H > I, I ≥ F ≤ K Conclusions: I. I < K  II. T > F  III. A > F  IV. I ≥ K  V. F ≥ A
If X + Y > P + Q and Y + P > X + Q, then it is definite that
Ads