78 জন দেখেছেন
"ইলেকট্রিক্যাল এন্ড ইলেকট্রনিক্স" বিভাগে জিজ্ঞাসা করেছেন (4,261 পয়েন্ট)

1 উত্তর

0 পছন্দ 0 জনের অপছন্দ
উত্তর প্রদান করেছেন (4,261 পয়েন্ট)

ক্যালকুলেটর বা স্যাটেলাইটে যে সৌরকোষসমূহ আমরা দেখি সেগুলো হল  photo voltaic কোষ বা module (module হল একই ফ্রেমে অবস্থিত একগুচ্ছ কোষ যারা ইলেক্ট্রিকালি সংযুক্ত থাকে)। Photo অর্থ হল আলো এবং Voltaic মানে হল তড়িৎ। অর্থাৎ Photo voltaic cell বলতে বোঝায় আলোকতড়িৎ কোষ, যা আলোকশক্তিকে তড়িৎ-এ রূপান্তরিত করে।

আলোকতড়িৎ কোষসমূহ অর্ধপরিবাহী (Semiconductor) পদার্থ দিয়ে গঠিত। বর্তমানে সিলিকন নামক অর্ধপরিবাহী বেশি ব্যবহৃত হয়। মূলত, যখন আলো এই কোষে এসে পড়ে তখন এই আলোর একটি নির্দিষ্ট অংশ অর্ধপরিবাহী কর্তৃক শোষিত হয়। এই আলোক শক্তি ইলেক্ট্রনকে পরমাণু হতে মুক্ত করে এবং ফলে ইলেক্টন গুলো স্বাধীনভাবে চলাচল করতে পারে। আলোকতড়িৎ কোষসমূহের প্রত্যেকের এক বা একাধিক তড়িৎক্ষেত্র থাকে যে বা যারা মুক্ত ইলেক্ট্রন গুলোকে একটি নির্দিষ্ট দিকে চলতে বাধ্য করে। এই ইলেক্ট্রনের প্রবাহই হল বিদ্যুৎপ্রবাহ সৃষ্টি করে। কোষগুলোর উপরে ও নিচে ধাতব পাত সংযুক্ত করে এই বিদ্যুৎকে বাইরে প্রবাহিত করা হয়।

ইহাই হল মূল প্রক্রিয়া, কিন্তু প্রকৃত ঘটনা আরও গভীর। একটি সিলিকন নির্মিত কোষ নিয়ে প্রকৃত ঘটনা আরও গভীরভাবে দেখা যাক -

সিলিকনের কিছু বিশেষ রাসায়নিক গুণাবলী রয়েছে। একটি সিলিকন পরমাণুতে ১৪ টি ইলেক্ট্রন রয়েছে, যারা ৩ টি ভিন্ন ভিন্ন শক্তিস্তরে সজ্জিত রয়েছে। কেন্দ্রের নিকটবর্তী প্রথম দুটি স্তর ইলেক্টন দ্বারা পূর্ণ থাকে। সর্বশেষ স্তরটি অর্ধপূর্ণ থাকে, অর্থাৎ ৪ টি ইলেক্ট্রন থাকে। প্রতিটা সিলিকন পরমাণু সর্বদা শেষ স্তরটি পরিপূর্ণ করতে চায়, অর্থাৎ ৮ টি ইলেক্ট্রন অর্জন করতে চায়। এই উদ্দ্যেশে, প্রতিটি সিলিকন পরমাণু কাছাকাছি অবস্থিত চারটি পরমাণুর সাথে ইলেক্ট্রন শেয়ার করে। অর্থাৎ প্রতিটি পরমাণু পার্শবর্তী পরমাণুর সাথে বন্ধন গঠন করে। মনে হয় যেন, প্রতিটি পরমাণু চারটি হাত দিয়ে অপর চারটি পরমাণুকে ধরে রাখে। এভাবে স্ফটিকাকার কাঠামো গঠিত হয়, যা আলোকতড়িৎ কোষের জন্য প্রয়োজনীয়।

এতক্ষন আমরা বিশুদ্ধ সিলিকন স্ফটিক নিয়ে আলোচনা করলাম। বিশুদ্ধ সিলিকন মোটামুটিভাবে বিদ্যুৎ অপরিবাহী, কারণ এতে স্বাভাবিক অবস্থাতে কোন মুক্ত ইলেক্ট্রন নেই। সৌরকোষ হিসেবে এই সিলিকনকে ব্যবহার করতে হলে সিলিকন স্ফটিকে সামান্য পরিবর্তন সাধন করতে হয়।

একটি সৌরকোষে ভেজালযুক্ত বা অবিশুদ্ধ সিলিকন ব্যবহৃত হয়। সিলিকন পরমাণুসমূহের সাথে অন্য পরমাণু মিশ্রিত করে অবিশুদ্ধ সিলিকন প্রস্তুত করা হয়। ফলে এই সিলিকনের কার্যকারিতা পরিবর্তিত হয়। সাধারনত আমরা ভেজালকে অনাকাংক্ষিত মনে করলেও, এক্ষেত্রে ভেজাল-ই কোষের সম্পূর্ণ কার্যকারিতা নিয়ন্ত্রণ করে। প্রকৃতপক্ষে এই ভেজাল ইচ্ছে করেই দেওয়া হয়। প্রতি মিলিয়ন সিলিকনের মধ্যে একটি করে ফসফরাস পরমাণুর উপস্থিতি বিবেচনা করা যাক। ফসফরাস পরমাণুর সর্ববহিস্থঃ স্তরে ৫ টি ইলেক্ট্রন রয়েছে। এই পরমাণুর চারটি ইলেক্ট্রন পার্শ্ববর্তী চারটি সিলিকনের সাথে আবদ্ধ থাকলেও একটি ইলেক্ট্রন মুক্তই থেকে যায়, যা কোন বন্ধনে আবদ্ধ থাকে না।

যখন বিশুদ্ধ সিলিকন শক্তিপ্রাপ্ত হয় (যেমন তাপ হতে প্রাপ্ত শক্তি), তখন কিছু ইলেক্ট্রন বন্ধন মুক্ত হয়ে তাদের পরমাণুকে ত্যাগ করে। প্রতিটি ইলেক্ট্রন ত্যাগের ফলে একটি করে হোল তৈরি হয়। এই ইলেক্ট্রনগুলো তখন সিলিকন স্ফটিকের মধ্যে অনবরত ছুটে বেড়ায় এবং হোল খুঁজে বেড়ায় তাতে পড়ার জন্য। এই ইলেক্তড়নগুলোকে মুক্ত বাহক বলে এবং এরাই বিদ্যুৎ পরিবহন করে। বিশুদ্ধ সিলিকনে এই ইলেক্ট্রনের সংখ্যা এতই কম যে তারা তড়িৎ পরিবহনে কোন গুরুত্বপূর্ণ ভূমিকা রাখতে পারেনা। ফলে বিশুদ্ধ সিলিকন এক অর্থে বিদ্যুৎ অপরিবাহী। কিন্তু ফসফরাস যুক্ত ভেজাল সিলিকনের কথা আলাদা। এক্ষেত্রে ফসফরাসের বাড়তি ইলেক্ট্রনগুলো খুব অল্প পরিমাণ শক্তিতেই মুক্ত হয়ে যায়- কেননা এই ইলেক্ট্রনগুলো কোন বন্ধনে আবদ্ধ থাকে না। ফলে বিশুদ্ধ সিলিকনের তুলনায় ভেজাল সিলিকনে তড়িৎ পরিবহনের জন্য অনেক বেশি বাহক পাওয়া যায়।বিশুদ্ধ সিলিকনের সাথে ভেজাল মেশানোকে ডোপিং বলা হয়। যখন ফসফরাস মেশানো হয় তখন প্রাপ্ত ভেজাল সিলিকনকে N-type সিলিকন বলা হয়। এক্ষেত্রে ইলেক্ট্রন বাহক হিসেবে কাজ করে এবং ইহার চার্জ negative বলে "n"-type বলা হয়। অর্থাৎ দেখা যাচ্ছে যে, ডোপিংকৃত সিলিকন বিশুদ্ধ ইলেক্ট্রনের চাইতে বেশ ভাল বিদ্যুৎ পরিবাহক।

প্রকৃতপক্ষে, সৌর কোষের এক অংশ হল N-type. অন্য অংশ বোরন দিয়ে ডোপিং করা হয়, যাকে P-type সিলিকন বলে। বোরনের সর্ববহিস্থঃ শক্তিস্তরে ৩ টি ইলেক্ট্রন রয়েছে। ফলে P-type সিলিকনে বাড়তি ইলেক্ট্রন থাকার পরিবর্তে বাড়তি হোলের সৃষ্টি হয়, যা তড়িৎ বাহক হিসেবে কাজ করে। ইলেক্ট্রনের অনুপস্থিতিই হল হোল, তাই হোলের চার্জ ইলেক্ট্রনের চার্জের বিপরীত অর্থাৎ positive। হোলের চার্জ positive বলেই "p"-type বলা হয়। হোলগুলোও ইলেক্ট্রনের মতই চলাচল করে।

আশ্চর্যজনক ঘটনা তখনই ঘটে যখন N-type এবং P-type সিলিকনকে একত্রে রাখা হয়। এই দুইধরণের সিলিকনকে সংযুক্ত করলে সংযোগস্থলে একটি তড়িৎক্ষেত্রের সৃষ্টি হয়। এই তড়িৎক্ষেত্র ছাড়া আলোক-তড়িৎ কোষ (Photovoltaic cell) কোনভাবেই কাজ করবে না। অর্থাৎ প্রতিটি আলোক-তড়িৎ কোষে কমপক্ষে একটি তড়িৎক্ষেত্র থাকতেই হবে।

এখন দেখা যাক N-type ও P-type সিলিকনকে সংযুক্ত করলে প্রকৃতপক্ষে কি ঘটে। N-type-এর মুক্ত ইলেক্ট্রনগুলো P-type-এর মধ্যে হোলগুলোকে খুঁজে পায় এবং খুব দ্রুত গিয়ে হোলগুলো পূর্ণ করে। ফলে সংযোগস্থলের N-type-এর দিকে positive charge এবং N-type-এর দিকে negative charge-এর সৃষ্টি হয়।এখন প্রশ্ন হলো যে, সকল মুক্ত ইলেক্ট্রন-ই কি হোলগুলোকে পূর্ণ করে। না, কেননা সংযোগস্থলে একটি তড়িৎক্ষেত্রের সৃষ্টি হয় যার দিক এমন হয় যা কিনা N-type থেকে আরও ইলেক্ট্রনকে P-type-এর দিকে আসতে বাধা হিসেবে কাজ করে।ফলে একসময় একটি সাম্যাবস্থার সৃষ্টি হয় যখন সৃষ্ট তড়িৎক্ষেত্র দুই পার্শ্বকে আলাদা করে রাখে।1

চিত্র ১- আলোক তড়িৎ কোষে তড়িৎ ক্ষেত্রের প্রভাব

এখন আমরা দেখব যে, এই অবস্থায় আলো পড়লে কি ঘটে। যখন ফোটন (আলোক কণা) সৌরকোষকে আঘাত করে তখন ইলেক্ট্রন-হোল জোড়া ভেঙ্গে যায় এবং ফলে ইলেক্ট্রন মুক্ত হয়।পর্যাপ্ত পরিমাণ শক্তিবিশিষ্ট প্রতিটি ফোটন কেবলমাত্র একটি ইলেক্ট্রনকে মুক্ত করে এবং সেইসাথে একটি হোল-ও সৃষ্টি হয়। এই ঘটনাটি যদি সৃষ্ট তড়িৎক্ষেত্রের কাছে ঘটে অথবা সৃষ্ট ইলেক্ট্রন ও হোল তড়িৎক্ষেত্রের প্রভাবযুক্ত অঞ্চলের আশেপাশে ঘুরে বেড়ায়, তবে তড়িৎক্ষেত্রটি N-type-এর দিকে একটি ইলেক্ট্রন এবং P-type-এর দিকে একটি হোল পাঠায়। এই অবস্থায় যদি বাইরে দিয়ে কোন সংযোগের ব্যাবস্থা করা হয়, তবে ইলেক্ট্রনগুলো সেই পথ দিয়ে P-type এলাকায় গিয়ে পৌঁছায় এবং হোল-এ এসে পড়ে। ইলেক্ট্রনের এই প্রবাহই তড়িৎপ্রবাহ সৃষ্টি করে এবং কোষটির তড়িৎক্ষেত্র একটি বিভব পার্থক্য বজায় রাখে। তড়িৎপ্রবাহ এবং বিভব পার্থক্য-এই দুইয়ের সম্মিলনে Power পাই যাকিনা এদের গুণফলের সমান।2

চিত্র ২- আলোক তড়িৎ কোষের কার্যপদ্ধতি
এখন প্রশ্ন হলো- এই আলোকতড়িৎ কোষ কি পরিমাণ সৌরশক্তি শোষণ করতে পারে? দুঃখজনক হলেও ইহা সত্য যে, বেশিরভাগ কোষ মোট সৌরশক্তির শতকরা মাত্র ২৫ ভাগ শোষণ করতে পারে।

সূর্যের আলোতে বিভিন্ন তরঙ্গদৈর্ঘ্যের আলো রয়েছে যাদের ফোটনের শক্তিও ভিন্ন ভিন্ন। যেহেতু সৌরকোষের উপর আপতিত আলোর ফোটনের শক্তি বিভিন্ন, তাই ইলেক্ট্রন-হোলযুগল সৃষ্টি করার মত পর্যাপ্ত শক্তি সকল ফোটনের থাকেনা। যে আলো  ইলেক্ট্রন-হোলযুগল সৃষ্টিতে ব্যর্থ হয়, সেই আলো সৌরকোষকে অতিক্রম করে চলে যায়। কেবলমাত্র একটি নির্দিষ্ট পরিমাণ শক্তির চেয়ে বেশি পরিমাণ শক্তি থাকলেই সেই ফোটন ইলেক্ট্রনকে মুক্ত করতে পারে। স্ফটিকাকার সিলিকনের জন্য এই শক্তির মান হলো 1.1eV (ইলেক্ট্রন ভোল্ট)। শক্তির এই মানকে আমরা Band gap energy বলি। কোন ফোটনের যদি এই শক্তির চাইতে বেশি পরিমাণ শক্তি থাকে তবে উদবৃত্ত শক্তি নষ্ট হয়ে যায়।এভাবে সৌরশক্তির শতকরা প্রায় ৭০ ভাগ নষ্ট হয়ে যায়।
এখন প্রশ্ন হলো যে,আরও বেশি ফোটনকে কাজে লাগানোর জন্য কেন আমরা আরও কম band gap energy বিশিষ্ট পদার্থ ব্যবহার করিনা? দুর্ভাগ্যজনক হলেও সত্য যে, band gap energy-ই সৃষ্ট তড়িৎক্ষেত্রের শক্তি নির্দেশ করে। অর্থাৎ কম band gap energy বিশিষ্ট পদার্থের দ্বারা সৃষ্ট কোষে বিভব পার্থক্যের মান নগণ্য হবে, যা গ্রহণযোগ্য নয়। মোটামুটিভাবে 1.4eV শক্তিকে সৌরকোষের জন্য আদর্শ মান হিসেবে গ্রহণ করা হয়।

সম্পর্কিত প্রশ্নগুচ্ছ

1 উত্তর

229,812 টি প্রশ্ন

294,672 টি উত্তর

81,542 টি মন্তব্য

115,291 জন নিবন্ধিত সদস্য



বিস্ময় বাংলা ভাষায় সমস্যা সমাধানের একটি নির্ভরযোগ্য মাধ্যম। এখানে আপনি আপনার প্রশ্ন করার পাশাপাশি অন্যদের প্রশ্নে উত্তর প্রদান করে অবদান রাখতে পারেন অনলাইনে বিভিন্ন সমস্যার সমাধানের জন্য সবথেকে বড় এবং উন্মুক্ত তথ্যভাণ্ডার গড়ে তোলার কাজে।
  1. মোঃ খোকন মিয়া

    825 পয়েন্টস

  2. আল আমিন ভাই

    795 পয়েন্টস

  3. Porimol ray

    760 পয়েন্টস

  4. Sabirul Islam

    757 পয়েন্টস

  5. Samiul islam Sagor

    751 পয়েন্টস

* বিস্ময়ে প্রকাশিত সকল প্রশ্ন বা উত্তরের দায়ভার একান্তই ব্যবহারকারীর নিজের, এক্ষেত্রে কোন প্রশ্নোত্তর কোনভাবেই বিস্ময় এর মতামত নয়।
...